867. Dielectric Polarisation Studies of the Formation of Hydrogen-bond Complexes by Alcohols.

By (the late) A. H. Boud and J. W. Smith.

The apparent molecular polarisations of n - and tert.-butyl alcohols at zero concentration in various benzene-triethylamine mixtures, and of triethylamine at zero concentration in various mixtures of benzene with the alcohols, have been determined. From the latter results the equilibrium constants for the association of triethylamine with the monomeric alcohol molecules and the effective molecular polarisations and dipole moments of the complexes have been deduced. Association of n-butyl alcohol with triethylamine occurs more readily than with pyridine, but that of tert.-butyl alcohol occurs less readily. No complex formation between n-butyl alcohol and n-butyl sulphide, dimethylaniline, or benzotrifluoride, between tert.-butyl alcohol and dimethylaniline, or between benzyl alcohol and benzoquinone could be detected by polarisation measurements on dilute solutions. From measurements on benzene solutions at 25° the following dipole moments have been derived: triethylamine $0.80, n$-butyl sulphide 1.61 , and benzotrifluoride 2.56 D.

When this work was begun in 1948, it was known that the apparent molecular polarisations of alcohols in benzene are increased by the presence of small concentrations of pyridine, and that the apparent molecular polarisations of phenols and aromatic amines are higher in dioxan or ether than in benzene. These phenomena were attributable to hydrogen-bond formation between the hydroxylic or amino-hydrogen atoms and the nitrogen atoms of pyridine molecules or oxygen atoms of dioxan or ether molecules. As, therefore, polarisation measurements appeared to present a method of detecting even a weak tendency for intermolecular hydrogen-bonding interaction, it was decided to study the apparent dielectric polarisations of alcohols in benzene solutions in the presence of other compounds the molecules of which contain atoms which may act as electron donors for hydrogen-bond formation, but which contain no hydrogen atoms likely to participate in hydrogen-bonding association. Such compounds include tertiary aliphatic and mixed aliphatic-aromatic amines, ethers, and thio-ethers, and certain ketones and fluorinecontaining compounds. Measurements have therefore been made on benzene solutions containing an alcohol together with triethylamine, dimethylaniline, n-butyl sulphide, benzoquinone, or benzotrifluoride, and the results compared with those to be expected if the polarisations of the components remained the same as when they are present alone in benzene solution at similar concentrations. Only in the systems containing triethylamine has any detectable enhancement of the polarisation been observed, however, and hence these systems have been studied in greater detail.

For this purpose the dielectric constants, refractive indices, and specific volumes of solutions of triethylamine in benzene and in various mixtures of benzene with n - or tert.butyl alcohol have been measured. The results are shown in Table 1, where $w_{A}{ }^{\prime}$ and w_{B} indicate the weight fractions of the alcohol in the solvent mixture and of triethylamine in
the solutions, respectively, and the other symbols have their usual significance. In both systems the apparent molecular polarisation of the triethylamine shows a significant dependence on the concentrations both of the amine itself and of the alcohol, but the corresponding value of the molecular refraction is not increased by the presence of alcohol. From these measurements, together with the results obtained for solutions of the alcohols

Table 1. Polarisation data for triethylamine at 25°.

$100 w_{2}$	ε	v	$n_{\text {D }}$	p (c.c.)	P_{2} (c.c.)	$\left[R_{\mathrm{D}}\right]_{\mathbf{2}}$ (c.c.)	
0.0000	$2 \cdot 2725$	$1 \cdot 14458$	1.4980	0.34088			
0.8324	$2 \cdot 2747$	$1 \cdot 14663$	1.4969	$0 \cdot 34191$	$47 \cdot 0$	$33 \cdot 6$	
$1 \cdot 5693$	$2 \cdot 2767$	$1 \cdot 14842$	$1 \cdot 49595$	0.34282	$47 \cdot 0$	$33 \cdot 6$	
$2 \cdot 5213$	$2 \cdot 2793$	$1 \cdot 15069$	$1 \cdot 4948{ }^{\text {b }}$	0.34399	$47 \cdot 0$	$33 \cdot 8$	
3.9361	2.2833	1-15416	1.4930	$0 \cdot 34579$	47-1	$33 \cdot 6$	
$5 \cdot 8653$	2.2887	$1 \cdot 15883$	$1 \cdot 4906$	$0 \cdot 34821$	47-1	$33 \cdot 7$	
0.0000	$2 \cdot 2725$	1-14456	$1 \cdot 4979$	$0 \cdot 34088$	-	-	
$0 \cdot 8988$	$2 \cdot 2748$	$1 \cdot 14675$	-	$0 \cdot 34201$	$47 \cdot 0$	-	
1-3291	$2 \cdot 2760$	$1 \cdot 14793$	-	$0 \cdot 34255$	$47 \cdot 2$	-	
$2 \cdot 2543$	$2 \cdot 2783$	$1 \cdot 15020$	-	$0 \cdot 34368$	$47 \cdot 1$	-	
3-3420	2.2814	$1 \cdot 15282$	-	$0 \cdot 34502$	$47 \cdot 0$	-	
$3 \cdot 6921$	2.2822	$1 \cdot 15363$	-	$0 \cdot 34543$	$47 \cdot 0$	-	
$5 \cdot 5640$	2.2871	1.15765	-	$0 \cdot 34756$	$46 \cdot 8$	-	
0.0000	-	$1 \cdot 14456$	1.4979	-	-	-	
0.7617	-	1-14641	1.4969	-	-	$33 \cdot 4$	
1.5175	-	1.14833	$1 \cdot 49595$	-	-	$33 \cdot 8$	
2.4187	-	1.15059	$1.4947{ }_{5}$	-	-	$33 \cdot 7$	
3.0877	-	$1 \cdot 15215$	$1.4940{ }^{\text {b }}$	-	-	$33 \cdot 8$	
$3 \cdot 8543$	-	$1 \cdot 15395$	1.4930	-	-	$33 \cdot 7$	
Solutions in benzene-n-butyl alcohol mixtures							
$100 w_{4}^{\prime \prime}$	$100 w_{B}$	ε	v	$n_{\text {D }}$	p (c.c.)	P_{B} (c.c.)	$\left[h_{\mathrm{D}}\right]_{B}$ (c.c.)
1-119	$0 \cdot 0000$	$2 \cdot 3172$	$1 \cdot 14603$	1.4965	$0 \cdot 34967$	-	
	0.5177	$2 \cdot 3221$	$1 \cdot 14717$	1.4959	$0 \cdot 35091$	59.6	33.7
	$1 \cdot 5613$	$2 \cdot 3304$	$1 \cdot 14957$	$1 \cdot 4947$	$0 \cdot 35317$	$58 \cdot 1$	$33 \cdot 9$
	$2 \cdot 4764$	$2 \cdot 3360$	$1 \cdot 15165$	1.49355	0.35485	56.6	$33 \cdot 7$
	$3 \cdot 2378$	$2 \cdot 3396$	1-15362	$1.4925{ }_{5}$	$0 \cdot 35611$	$55 \cdot 5$	$33 \cdot 7$
	$4 \cdot 2270$	$2 \cdot 3437$	$1 \cdot 15570$	$1.4914{ }^{\text {b }}$	0.35750	$54 \cdot 1$	$33 \cdot 7$
	6.9467	$2 \cdot 3513$	1.16213	1.4882	$0 \cdot 36090$	51.7	$33 \cdot 7$
3.882	0.0000	$2 \cdot 4348$	1-14926	1.4931	$0 \cdot 37182$	-	-
	0.7725	$2 \cdot 4536$	1-15079	1.4923	$0 \cdot 37561$	$87 \cdot 3$	33-8
	1-3628	$2 \cdot 4658$	1-15194	1.4916	$0 \cdot 37810$	$84 \cdot 2$	$33 \cdot 3$
	$2 \cdot 6619$	$2 \cdot 4866$	1-15463	1.4902	$0 \cdot 38258$	$78 \cdot 5$	$33 \cdot 4$
	$3 \cdot 4780$	$2 \cdot 4964$	1.15640	1.4894	$0 \cdot 38485$	$75 \cdot 5$	$33 \cdot 6$
	$4 \cdot 7494$	2.5087	$1 \cdot 15912$	1.4880	$0 \cdot 38786$	$71 \cdot 8$	$33 \cdot 6$
	5.4927	$2 \cdot 5138$	$1 \cdot 16070$	1.4872	$0 \cdot 38926$	69.7	$33 \cdot 6$
6.559	0.0000	$2 \cdot 5498$	$1 \cdot 15213$	1.4899	0.39245	-	-
	0.5638	2.5745	1.15316	1.4892	$0 \cdot 39691$	119.8	
	1-2026	2.5950	$1 \cdot 15437$	$1.4886{ }_{3}$	$0 \cdot 40070$	109.1	$33 \cdot 2$
	1.8453	2.6157	1.15556	1.4880_{5}	$0 \cdot 40449$	$105 \cdot 7$	$33 \cdot 4$
	$2 \cdot 7335$	$2 \cdot 6366$	$1 \cdot 15725$	1.4872	$0 \cdot 40847$	$99 \cdot 0$	$33 \cdot 6$
	$4 \cdot 7409$	$2 \cdot 6702$	1-16127	1.4852_{5}	$0 \cdot 41530$	88.5	33.5
	5.9471	$2 \cdot 6848$	1.16420	$1.4839{ }^{\text {b }}$	0.41868	$84 \cdot 3$	$33 \cdot 8$
$10 \cdot 486$	0.0000	$2 \cdot 7484$	$1 \cdot 15634$	1.4849	0.42578		
	0.8836	2.7958	$1 \cdot 15779$	$14^{4842}{ }^{5}$	$0 \cdot 43353$	131.8	$34 \cdot 0$
	1.7344	$2 \cdot 8344$	$1 \cdot 15923$	$1.4836{ }^{\circ}$	$0 \cdot 43987$	125.3	$33 \cdot 6$
	2.5175	2.8639	1-16060	1.4829	$0 \cdot 44475$	119.3	$33 \cdot 5$
	$3 \cdot 3977$	$2 \cdot 8918$	1-16219	1.4820	0.44945	113.6	$33 \cdot 5$
	4.5695	$2 \cdot 9212$	1.16435	1.4809	$0 \cdot 45455$	106.9	$33 \cdot 4$
	$7 \cdot 0021$	2.9581	$1 \cdot 16897$	1.4786	$0 \cdot 46166$	94.9	$33 \cdot 4$
	Solutions in benzene-tert.-butyl alcohol mixtures						
1.025	0.0000	2.3101	$1 \cdot 14662$	1-4964	0.34853	-	-
	0.9762	$2 \cdot 3141$	$1 \cdot 14892$	1.4952	$0 \cdot 34997$	$50 \cdot 2$	33-8
	1.8479	$2 \cdot 3175$	$1 \cdot 15098$	1.4941	$0 \cdot 35123$	$50 \cdot 0$	$33 \cdot 7$
	$2 \cdot 8360$	$2 \cdot 3212$	1.15331	1.4929	$0 \cdot 35262$	$49 \cdot 9$	$33 \cdot 7$
	3.9042	$2 \cdot 3249$	1.15583	1.4915	$0 \cdot 35408$	$49 \cdot 7$	$33 \cdot 9$
	$4 \cdot 8634$	$2 \cdot 3281$	1.15810	1.4903	$0 \cdot 35537$	$49 \cdot 5$	$33 \cdot 5$
	$5 \cdot 9631$	$2 \cdot 3316$	1-16069	1.4891	$0 \cdot 35681$	$49 \cdot 3$	$33 \cdot 7$

Table 1. (Continued.)

$100 w_{A}^{\prime}$	$100 w_{B}$	ε	v	n_{0}	p (c.c.)	P_{B} (c.c.)	$\left[R_{\text {D }}\right]_{B}$ (c.c.)
		Solutions in benzene-tert.-butyl alcohol mixtures					
$2 \cdot 345$	0.0000	$2 \cdot 3586$	$1 \cdot 14902$	1.49415	0.35816		
	$0 \cdot 8858$	$2 \cdot 3635$	$1 \cdot 15110$	$1.4931{ }^{5}$	$0 \cdot 35970$	$53 \cdot 8$	33.9
	$2 \cdot 1451$	$2 \cdot 3702$	$1 \cdot 15395$	$1 \cdot 4916$	0.36180	$53 \cdot 4$	$33 \cdot 7$
	$2 \cdot 4187$	$2 \cdot 3716$	$1 \cdot 15460$	$1 \cdot 4913$	0.36226	$53 \cdot 4$	$33 \cdot 8$
	$3 \cdot 5276$	2-3764	1.15701	$1 \cdot 4900$	0.36389	$52 \cdot 7$	$33 \cdot 6$
	4.4192	$2 \cdot 3807$	$1 \cdot 15915$	$1.4889{ }_{5}$	0.36534	$52 \cdot 7$	$33 \cdot 7$
	5.6938	$2 \cdot 3856$	$1 \cdot 16206$	1.4874	$0 \cdot 36714$	$52 \cdot 2$	33.6
$3 \cdot 723$	0.0000	$2 \cdot 4080$	1-15149	1.4921	0.36781	-	
	1.0824	$2 \cdot 4149$	1-15399	$1 \cdot 4909$	$0 \cdot 36983$	$56 \cdot 1$	34-1
	1.8890	$2 \cdot 4193$	$1 \cdot 15577$	$1 \cdot 4900$	$0 \cdot 37119$	$55 \cdot 4$	$33 \cdot 9$
	$2 \cdot 6795$	$2 \cdot 4237$	1-15749	1.4891	$0 \cdot 37252$	$55 \cdot 0$	$33 \cdot 8$
	$3 \cdot 7054$	$2 \cdot 4288$	1-15976	1.4879	0.37416	54.6	$33 \cdot 7$
	$4 \cdot 7975$	$2 \cdot 4342$	$1 \cdot 16221$	1.4867	0.37591	$54 \cdot 3$	$33 \cdot 7$
	6.0594	$2 \cdot 4398$	$1 \cdot 16499$	1.4852_{5}	0.37779	53.9	33.7
6.239		$2 \cdot 4892$	$1 \cdot 15593$	$1 \cdot 4887$	0.38346		
	$0 \cdot 8406$	$2 \cdot 4958$	1-15772	1.4878	0.38519	59.6	$33 \cdot 7$
	1.7197	$2 \cdot 5025$	1-15960	$1 \cdot 4869$	$0 \cdot 38696$	$59 \cdot 4$	$33 \cdot 7$
	$2 \cdot 7528$	$2 \cdot 5093$	1-16179	1.4858	$0 \cdot 38886$	$58 \cdot 7$	$33 \cdot 7$
	$3 \cdot 6618$	$2 \cdot 5149$	1.16376	1.4849	$0 \cdot 39048$	$58 \cdot 2$	$33 \cdot 7$
	4.9925	2.5224	1.16661	1.4835_{5}	0.39289	57.9	33-7
	$6 \cdot 1538$	2.5293	1:16912	$1.4822{ }^{5}$	$0 \cdot 39474$	$57 \cdot 3$	$33 \cdot 6$
$7 \cdot 770$	0.0000	$2 \cdot 5415$	1-15862	1.4865	0.39327		
	$0 \cdot 8557$	2.5494	1-16040	1.4856	0.39520	62.6	$33 \cdot 4$
	1.7972	2.5566	1-16236	1.4846	0.39707	61.2	$33 \cdot 5$
	$2 \cdot 7325$	2.5638	1-16426	1.4836	$0 \cdot 39893$	$60 \cdot 8$	33.5
	$3 \cdot 5759$	2.5694	1-16603	1.4828	$0 \cdot 40048$	$60 \cdot 2$	33.5
	$4 \cdot 4710$	2.5753	1.16787	1.4818	$0 \cdot 40211$	59.8	33.4
	$6 \cdot 1120$	2.5851	1-17130	$1 \cdot 4801$	$0 \cdot 40493$	$59 \cdot 1$	$33 \cdot 4$

in benzene, ${ }^{1}$ the apparent molecular polarisations of triethylamine at zero concentration in the alcohol-benzene mixtures, $\left(P_{B_{\infty}}\right)_{A S}$, and of the alcohols at zero concentration in various triethylamine-benzene mixtures, $\left(P_{A_{\infty}}\right)_{B S}$, have been calculated. These are summarised in Table 2, where α, β, and γ are the limiting values of $\mathrm{d} \varepsilon / \mathrm{d} w, \mathrm{~d} v / \mathrm{d} w$, and $\mathrm{d} n^{2} / \mathrm{d} w$, respectively, at zero concentration of solute, and $\left(P_{A_{\infty}}\right)_{s}$ and $\left(P_{B_{\infty}}\right)_{s}$ are the molecular polarisations of the solutes at zero concentration in benzene alone.

It has been shown ${ }^{2}$ that if two solutes A and B associate to form an unstable compound $A B$, the molecular polarisation of which, at zero concentration in an inert solvent, is $\left(P_{A B_{\infty}}\right)_{S}$, it should be possible to deduce the values of $\left(P_{A B_{\infty}}\right)_{s}$ and of K, the association constant of the complex, from dielectric-polarisation measurements alone. If the active masses of A, B, and $A B$ can be represented by their concentrations in mole/c.c., and M_{B} is the molecular weight of B, a plot of $1 /\left\{\left(P_{A_{\infty}}\right)_{B S}-\left(P_{A_{\infty}}\right)_{s}\right\}$ against $M_{B} v_{B S} / w_{B}$ ' should be linear, with a slope $1 / K \Delta P$ and an intercept on the axis for the former of $1 / \Delta P$, where $\Delta P=\left(P_{A B_{\infty}}\right)_{s}-\left(P_{A_{\infty}}\right)_{s}-\left(P_{B_{\infty}}\right)_{s}$. The application of this method gives reasonable values for the dipole moments and association constants of the complexes formed by pyridine with n - and tert.-butyl alcohol and diphenylmethanol. ${ }^{3}$ The values for the present systems of the functions which require plotting are shown in the last two columns of Table 2. They also lead to very good straight lines, and the values of the slopes and intercepts obtained by application of the least-squares method, and the quantities derived from them, are shown in Table 3.

These results should apply to the association of triethylamine molecules with monomeric alcohol molecules. On the other hand the values of $\left(P_{B_{\infty}}\right)_{\Delta s}$ apply to systems in which the alcohols themselves are strongly associated, a circumstance which must affect the association of the triethylamine with the alcohol. Hence, as was found for the systems

[^0]involving pyridine and n - or tert.-butyl alcohol, the $\left(P_{B_{\infty}}\right)_{A S}-\left(P_{B_{\infty}}\right)_{s}$ values are greater than would be expected from the treatment of the systems as solutions of alcohols in triethylamine-benzene mixtures, and hence the plots of $1 /\left\{\left(P_{B_{\infty}}\right)_{A B}-\left(P_{B_{\infty}}\right)_{s}\right\}$ against $M_{A} v_{A s} / w_{A}^{\prime}$ do not superpose upon those for the reverse system, although the results for the tert.-butyl alcohol-triethylamine system are much more nearly superposable than those for the tert-butyl alcohol-pyridine system. In each case, however, the divergences are in

Table 2. Summary of polarisation data for butyl alcohol-triethylamine-benzene systems.

Table 3. Association constants in benzene solution and dipole moments of complexes of triethylamine with alcohols.

	$\begin{gathered} 1 / K \Delta P \\ \times 10^{8} \end{gathered}$	$\begin{aligned} & 1 / \Delta P \\ & \times 10^{4} \end{aligned}$	$\begin{gathered} K \\ \times 10^{-1} \end{gathered}$	$\begin{gathered} \Delta P \\ (\text { c.c. }) \end{gathered}$	$\underset{(\mathrm{c} . \mathrm{c} .)}{\left(P_{B_{\infty}}\right)}$	$\underset{\text { (c.c.) }}{\left[R_{\mathrm{D}}\right]_{A B}}$	$\begin{aligned} & \mu_{A B} \\ & (\mathrm{D}) \end{aligned}$
n-Butyl alcohol	749	247	330	40	168	56	2.34
tert.-Butyl alcohol	3491	300	86	33	161	57	$2 \cdot 25$

the same sense as was observed for the systems formerly studied, and hence support the explanation then offered.

As is to be expected from the relative strengths of the two bases concerned, the value of K for the system n-butyl alcohol-triethylamine is appreciably greater than that for the system n-butyl alcohol-pyridine $\left(20 \times 10^{2}\right)$, and is very close to that found for the system n-heptyl alcohol-trimethylamine by Denyer, Gilchrist, Pegg, Smith, Tomlinson, and Sutton, ${ }^{4}$ using a vapour-partition method $\left(35 \times 10^{2}\right)$. With tert.-butyl alcohol, on the other hand, association with triethylamine occurs less readily than with pyridine : this may be ascribed to steric effects which are unfavourable to association, since in certain

[^1]conformations the methyl groups of the alcohol and of the triethylamine molecule approach one another fairly closely.

If the apparent dipole moments of the complexes are interpreted as the vector sums of the moments of the alcohols (1.69 D) and of triethylamine ($0.80 \cdot \mathrm{D}$), they indicate that the dipoles in the alcohols are directed at angles of 43° and $54_{2^{\circ}}{ }^{\circ}$ to the axis of the $\mathrm{H}-\mathrm{O}$ bond in n - and tert.-butyl alcohol, respectively. These angles differ in the same sense, and by about the same amount, as was inferred from the results for the complexes with pyridine (60° and 72°, respectively). The two sets of results can be reconciled if it is supposed that there is a small contribution to the moment through a redistribution of the electron density in the $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ system, as has been suggested by Hulett, Pegg, and Sutton ${ }^{5}$ for such association, and also a consequential modification in the remaining bond moments in the molecules. The difference between the results for the triethylamine and pyridine complexes corresponds to an additional moment along the $\mathrm{H}-\mathrm{O}$ bond axis of 0.18 and 0.25 D in the n - and tert.-butyl alcohol complexes, respectively.

The results of measurements on the other systems studied are given in Table 4. For the solutions in the mixed solvents the apparent values of the molecular polarisation of the solute $\left(P_{2}\right)$ are compared with the values found for the same concentrations in benzene $\left(P^{\prime}\right)$. Except for the highest concentrations of benzyl alcohol in the benzene- p-benzoquinone mixture, the values of P_{2} are within experimental error of, or less than, $P_{2}{ }^{\prime}$. It must be inferred, therefore, that there is insufficient complex formation in these systems at the concentrations studied to produce a significant change in the dielectric polarisation. The fact that for solutions of both n - and tert-butyl alcohol in benzene-dimethylaniline mixtures the values of P_{2} are lower than in benzene itself, and by an almost constant amount in each case, probably arises from a reduction of the effective molecular polarisation of the dimethylaniline through the increase in the dielectric constant of the medium arising from the addition of the butyl alcohol. This view seems to be supported by the fact that the molecular polarisation values for benzotrifluoride in benzene- n-butyl alcohol mixtures are almost exactly those to be expected in benzene solutions of the same dielectric constant. Such results give a warning of the care which should be taken in interpreting small changes in dielectric polarisation quantitatively in terms of hydrogen-bonding association when the effective dipole moment of one of the molecular species concerned is strongly dependent on the dielectric constant of the medium. The alcohols and triethylamine studied here do not suffer from this defect, nos cives pyridine, which was used in the previous investigation.

The molecular polarisations at zero concentration, molecular refractions, and dipole moments deduced from the measurements on the various components separately in benzene solution are shown in Table 5, together with the corresponding figures for p-benzoquinone in carbon tetrachloride solution.

Our values of $P_{2_{\infty}}$ and μ for triethylamine are in good agreement with those of Higasi, ${ }^{6}$ but are appreciably lower than those reported by Barclay, Le Fèvre, and Smythe (50.1 c.c. and 0.91 d). ${ }^{7}$ This arises from the fact that the latter authors found a considerable departure from linearity in the $\varepsilon-w_{2}$ plot, leading to a fairly rapid increase in $\Delta \varepsilon / w_{2}$ with decrease in w_{2}. We find ε to be sensibly linear with w_{2} over the concentration range studied, the slope α being almost identical with the value of $\Delta \varepsilon / w_{2}$ found by Barclay, Le Fèvre, and Smythe at the highest concentrations they studied. We also find $\left[R_{\mathrm{D}}\right]_{2}$ to be higher than the value (33.1 c.c.) reported by them, and to agree with the value found by Vogel, ${ }^{8}$ which is also indicated by our own measurements on the pure liquid.

The dipole moment found for benzotrichloride is close to previous values $(2 \cdot 56,9$ $2.60 \mathrm{D}^{10}$). The mesomeric mechanism suggested by Roberts, Webb, and McElhill ${ }^{10}$ to account for the fact that this moment is higher than that of trifluoromethylcyclohexane

[^2]Table 4. Polarisation data.

$100 w_{2}$	$\boldsymbol{\varepsilon}$	v	n_{0}	$\begin{gathered} P_{2} \\ \text { (c.c.) } \end{gathered}$	$\begin{gathered} R_{D} \\ \text { (c.c.) } \end{gathered}$	$100 w_{2}$	ε	v	$n^{\text {D }}$	$\begin{gathered} P_{2} \\ \text { (c.c.) } \end{gathered}$	$\begin{gathered} R_{\mathbf{D}} \\ \text { (c.c.) } \end{gathered}$
$\mathrm{n}-\mathrm{Butyl}$ sulphide in benzene											
0.0000	2.2725	$1 \cdot 14458$	1.4979		-	$0 \cdot 0000$	$2 \cdot 2725$	$1 \cdot 14457$	1.4979		
1-1666	$2 \cdot 2924$	$1 \cdot 14532$	1.4972	99.8	-	0.5141	$2 \cdot 2752$	$1 \cdot 14300$	1.4980	37-7	$28 \cdot 5$
1.9566	$2 \cdot 3062$	$1 \cdot 14593$	1.4967	$100 \cdot 0$	$46 \cdot 9$	$0 \cdot 7832$	$2 \cdot 2762$	$1 \cdot 14220$	1.4981	36•7	$28 \cdot 4$
$2 \cdot 5968$	$2 \cdot 3173$	1-14629	$1 \cdot 4963$	$99 \cdot 8$	$46 \cdot 8$	0.9020	$2 \cdot 2770$	$1 \cdot 14182$	1.4981	37-2	$28 \cdot 0$
$3 \cdot 8298$	$2 \cdot 3382$	$1 \cdot 14713$	1.4957	99.6	$47 \cdot 0$	1.0770	$2 \cdot 2778$	$1 \cdot 14129$	1.4982	$37 \cdot 2$	$28 \cdot 7$
$5 \cdot 0269$	$2 \cdot 3593$	$1 \cdot 14783$	1.4949	99.4	$46 \cdot 9$	$1 \cdot 3365$	$2 \cdot 2792$	$1 \cdot 14042$	1.4982	37.0	$28 \cdot 0$
$5 \cdot 4504$	$2 \cdot 3668$	$1 \cdot 14816$	1.4947	99.4	$46 \cdot 9$	1.8685	$2 \cdot 2818$	$1 \cdot 13881$	1.4984	$37 \cdot 0$	$28 \cdot 0$
Benzotrifluoride in benzene						1.9149	$2 \cdot 2820$	$1 \cdot 13871$	1.4985	$37 \cdot 1$	$28 \cdot 7$
						$2 \cdot 0509$	$2 \cdot 2830$	$1 \cdot 13827$	1.4985	37•3	$28 \cdot 5$
0.0000	$2 \cdot 2725$	1-14458	1.4979			$2 \cdot 3884$	$2 \cdot 2847$	$1 \cdot 13728$	1.4985	37-3	$28 \cdot 2$
0.9262	$2 \cdot 3156$	1.14198	$1.4972{ }_{5}$	164.0	$31 \cdot 2$	$3 \cdot 2314$	$2 \cdot 2889$	$1 \cdot 13467$	1.4989	$37 \cdot 2$	$28 \cdot 4$
$1 \cdot 3762$	$2 \cdot 3359$	$1 \cdot 14074$	$1.4969{ }^{\text {b }}$	$162 \cdot 5$	31.0	$3 \cdot 5536$	$2 \cdot 2908$	$1 \cdot 13362$	1.4989	37-3	28.2
1.5063	$2 \cdot 3423$	$1 \cdot 14039$	$1 \cdot 4968$	162.5	31.0	$5 \cdot 2114$	$2 \cdot 2990$	$1 \cdot 12860$	1.4995	37-1	28.4
$2 \cdot 3891$	$2 \cdot 3833$	$1 \cdot 13796$	1.4961	161.2	$30 \cdot 8$	p-Benzoquinone in carbon tetrachloride					
$2 \cdot 6512$	$2 \cdot 3950$	$1 \cdot 13720$	1.4959	$160 \cdot 4$	30.8						
$3 \cdot 2767$	$2 \cdot 4248$	$1 \cdot 13545$	$1 \cdot 4954$	$160 \cdot 0$	$30 \cdot 7$	0.0000	2.2252	0.63135	1.4574		
$4 \cdot 0261$	$2 \cdot 4596$	$1 \cdot 13340$	$1 \cdot 4948$	$159 \cdot 2$	30.9	$0 \cdot 4894$	$2 \cdot 2301$	0.63244	1.4580	$38 \cdot 1$	$29 \cdot 4$
$4 \cdot 1568$	$2 \cdot 4669$	1-13299	$1 \cdot 4947{ }_{5}$	$159 \cdot 4$	$30 \cdot 8$	$0 \cdot 7298$	$2 \cdot 2322$	$0 \cdot 63295$	1.4583	$37 \cdot 5$	29.3
$5 \cdot 4780$	$2 \cdot 5295$	$1 \cdot 12935$	1.4938	$157 \cdot 7$	$30 \cdot 9$	1-3577	$2 \cdot 2387$	0.63431	1.4590	$38 \cdot 0$	$29 \cdot 2$
$7 \cdot 0079$	$2 \cdot 6060$	1-12482	1.4926	$156 \cdot 8$	$30 \cdot 7$						

$100 w_{2}$	ε	v	$n_{\text {D }}$	$\begin{gathered} P_{2} \\ \text { (c.c.) } \end{gathered}$	$\begin{gathered} R_{\mathrm{D}} \\ \text { (c.c.) } \end{gathered}$	$\begin{gathered} P_{2}{ }^{\prime} \\ \text { (c.c.) } \end{gathered}$	$100 w_{2}$	ε	v	$n_{\text {D }}$	$\begin{gathered} P_{\mathbf{2}} \\ \text { (c.c.) } \end{gathered}$	$\begin{aligned} & R_{\mathrm{D}} \\ & \text { (c.c. } \end{aligned}$	$\begin{aligned} & \mathbf{2}^{\prime} \\ & \text { c. } \end{aligned}$
n -Butyl alcohol in benzene +n -butyl sulphide \quad Benzyl alcohol in benzene +													
0.0000	$2 \cdot 3716$	$1 \cdot 14830$	$1 \cdot 4943$	-		-	0.0000	$2 \cdot 3008$	1-12798	$1 \cdot 4994$			
0.9129	$2 \cdot 4078$	$1 \cdot 14936$	$1 \cdot 4934$	$82 \cdot 0$		$82 \cdot 1$	$1 \cdot 1329$	$2 \cdot 3352$	$1 \cdot 12601$	$1 \mathrm{H}^{4998}{ }_{5}$	91.0	$32 \cdot 8$	$91 \cdot 4$
1.9075	$2 \cdot 4501$	$1 \cdot 15059$	1.4920	$83 \cdot 6$	$22 \cdot 3$	$83 \cdot 4$	$2 \cdot 2608$	$2 \cdot 3731$	1-12411	1.5003	$93 \cdot 3$	$32 \cdot 8$	$93 \cdot 5$
$2 \cdot 6053$	$2 \cdot 4807$	1-15134	1.4913	$84 \cdot 1$	$22 \cdot 4$	83.9	$3 \cdot 5633$	$2 \cdot 4199$	1-12182	1.5008	95-3	$32 \cdot 7$	$95 \cdot 2$
$4 \cdot 0779$	$2 \cdot 5448$	1-15304	$1-4895$	$84 \cdot 2$	$22 \cdot 3$	$84 \cdot 3$	5.3419	$2 \cdot 4873$	1-11869	1.5017	96.9	32.9	96.3
$4 \cdot 7938$	2.5763	1-15371	1.4889	$84 \cdot 1$	$22 \cdot 2$	$84 \cdot 2$	$7 \cdot 9736$	$2 \cdot 5926$	1-11407	$1.5024{ }_{5}$	98.2	$32 \cdot 6$	97-0
\%.3422	$2 \cdot 6007$	1-15427	1.4880	84.0	22.2								

n -Butyl alcohol in benzene + dimethylaniline
($6.01 w t . \%$)

$0 \cdot 0000$	$2 \cdot 4273$	1-13894	1.5011			
0.9009	$2 \cdot 4606$	$1 \cdot 14020$	1.5000	78.0		82
$1 \cdot 7061$	$2 \cdot 4937$	1-14116	$1 \cdot 4989$	$80 \cdot 0$	22.3	$83 \cdot 2$
$2 \cdot 4613$	$2 \cdot 5264$	1-14209	$1 \cdot 4977$	81.3	21.8	$83 \cdot 8$
$3 \cdot 2811$	2.5612	1-14318	$1 \cdot 4964$	81.7	21.8	84-1
-4026	$2 \cdot 6115$	1-14438	$1 \cdot 4953$	$82 \cdot 3$	$22 \cdot 0$	84
$\cdot 1695$	$2 \cdot 6458$	$1 \cdot 14530$	$1 \cdot 4941_{5}$	82.5	$21 \cdot 8$	$84 \cdot 2$

Benzotrifluoride in benzene +n -butyl alcohol
(6.194 wt. \%)

0.0000	2.5511	1.15220	1.4900	-	-	-
0.8089	2.5885	1.14983	1.4894_{5}	$154 \cdot 5$	-	$164 \cdot 0$
1.2792	2.6107	1.14849	1.4891	$154 \cdot 8$	-	$162 \cdot 8$
2.0323	2.6453	1.14635	1.4886	153.3	-	$161 \cdot 4$
2.8902	2.6858	1.14393	1.4879_{s}	152.9	-	$160 \cdot 3$
4.3920	2.7568	1.13957	1.4870	151.1	-	$159 \cdot 2$
5.5897	2.8120	1.13613	1.4861	149.3	-	$157 \cdot 6$

tert.-Butyl alcohol in benzene + dimethylaniline
($7 \cdot 60 \mathrm{wt} . \%$)
$\begin{array}{lllll}0.0000 & 2.4634 & 1-13733 & 1.5022\end{array}$
$\begin{array}{lllll}0.9163 & 2.4965 & 1-13922 & 1.5008\end{array}$
$1.7709 \quad 2.5247 \quad 1.14093 \quad 1.4993$
$\begin{array}{lllllll}2.7839 & 2.524 & 14093 & 1 & 7903 & 76 \cdot 1 & 22 \cdot 3 \\ 80.3\end{array}$
$\begin{array}{lllllll}2.7839 & 2.5599 & 1.14289 & 1.4979 & 75 \cdot 8 & 22.7 & 79.6\end{array}$
$\begin{array}{lllllll}3.8084 & 2.5950 & 1 \cdot 14480 & 1.4964 & 75 \cdot 3 & 22.7 & 78.5\end{array}$
$\begin{array}{lllllll}\mathbf{4} \cdot 4623 & 2.6172 & 1.14594 & 1.4959 & 74.9 & 22.6 & \mathbf{7 7 . 7}\end{array}$
$\begin{array}{lllllll}5 \cdot 0029 & 2.6330 & 1 \cdot 14692 & 1.4957 & 74 \cdot 1 & 22.6 & \mathbf{7 7} \cdot 2\end{array}$

Table 5.

Compound		$10^{3} \alpha$	$10^{3} \beta$	$10^{3} \gamma$	$\begin{gathered} P_{2 \infty} \\ \text { (c.c.) } \end{gathered}$	$\begin{aligned} & {\left[R_{\mathrm{D}}\right]_{2}} \\ & \text { (c.c.) } \end{aligned}$	$\stackrel{\mu}{(\mathrm{D})}$
Triethylamine ...	(B)	264	244	-372	$47 \cdot 0$	$33 \cdot 8$	$0 \cdot 80$
n-Butyl sulphide	(B)	1725	66	-178	$100 \cdot 1$	46.9	1.61
Benzotrifluoride.	(B)	4610	-279	-226	$164 \cdot 4$	$30 \cdot 8$	$2 \cdot 56$
p-Benzoquinone	(B)	508	-306	88	37.3	28.4	
p-Benzoquinone	(C)	994	219	353	38.0	29.3	-

(B) = Benzene solution; (C) = carbon tetrachloride solution.
would seem to favour the possibility of hydrogen-bonding by the fluorine atoms, but any such association which occurs in the system studied is apparently too weak to be detected by this dilute-solution method.

Our value for the moment of n-butyl sulphide is slightly higher than values previously reported ($1.57,{ }^{11} 1.56 \mathrm{D}^{12}$). This is appreciably greater than the moment of an aliphatic ether ($\sim 1.22 \mathrm{D}$), a fact which supports the view that the association which leads to an increase in polarisation in solutions of alcohols in ethers is not a simple dipole association, since the latter type of association should occur even more strongly with thio-ethers.

Both our $P_{2 \infty}$ and $\left[R_{D}\right.$] values for benzoquinone in benzene are appreciably lower than those reported by Le Fèvre and Le Fèvre, ${ }^{13}$ but close to those of Hammick, Hampson, and Sutton, ${ }^{14}$ as is our $P_{2 \infty}$ value for carbon tetrachloride solutions. We find the [R_{D}] value in the latter solvent to be slightly higher than in benzene, however. As a result, the differences between $P_{2 \infty}$ and [R_{D}], attributable to atom polarisation, are 8.9 and 8.7 c.c. in benzene and carbon tetrachloride, respectively, as compared with Hammick, Hampson, and Sutton's values of 8.83 and 9.59 c.c., respectively, and Coop and Sutton's value of 8.2 c.c. for the vapour. ${ }^{15}$

Experimental

Materials.-Benzene, n - and tert.-butyl alcohol, benzyl alcohol, and dimethylaniline were purified as described previously. ${ }^{1,16}$ Commercial pure triethylamine was kept for some weeks over potassium hydroxide and distilled twice from this reagent, the middle fractions being collected. The product used had $n_{\mathrm{D}}^{25} 1 \cdot 3980, d_{4}^{25} 0.72350$, whence $\left[R_{\mathrm{D}}\right]=33 \cdot 8$ c.c. n-Butyl sulphide, prepared from pure n-butyl bromide and sodium sulphide by Bost and Conn's method, ${ }^{17}$ had $n_{\mathrm{D}}^{25} 1 \cdot 4505, d_{4}^{25} 0 \cdot 8366,\left[R_{\mathrm{D}}\right] 47 \cdot 0$ c.c. Pure commercial benzotrifluoride was dried $\left(\mathrm{CaCl}_{2}\right)$ and fractionally distilled, the sample used having b. p. $102 \cdot 8^{\circ} / 778 \mathrm{~mm} ., n_{\mathrm{D}}^{25} 1.41215, d_{4}^{25}$ $1 \cdot 18132$, $\left[R_{\mathrm{D}}\right] 30.8$ c.c. p-Benzoquinone was prepared by oxidising quinol with sodium dichromate and sulphuric acid. ${ }^{18}$ It was recrystallised twice from benzene and finally sublimed : it had m. p. 113.6°.

Methods.-The dielectric constants of the solutions, relative to that of pure benzene, were measured with a modified form of the heterodyne-beat apparatus described by Few, Smith, and Witten. ${ }^{19}$ The densities were measured with a pyknometer (about 10 c.c. capacity), and the refractive indices with both Pulfrich and Abbé refractometers. All measurements were made at 25°.

12 Jensen, Z. anorg. Chem., 1935, 225, 97.
${ }^{13}$ Le Fèvre and Le Fèvre, $J ., 1935,1696$.
14 Hammick, Hampson, and 'Jenkins, J., 1938, 1263.
${ }_{15}$ Coop and Sutton, J., 1938, 1269.
${ }_{16}$ Few and Smith, J., 1949, 753.
17 Bost and Conn, Org. Synth., 1935, 15, 72.
18 Vliet, ibid., 1922, 2, 85.
${ }^{19}$ Few, Smith, and Witten, Trans. Faraday Soc., 1952, 48, 211.

[^0]: ${ }^{1}$ Boud, Cleverdon, Collins, and Smith, J., 1955, 3793.
 ${ }^{2}$ Few and Smith, J., 1949, 2781.
 ${ }^{3}$ Cleverdon, Collins, and Smith, preceding paper.

[^1]: ${ }^{4}$ Denyer, Gilchrist, Pegg, Smith, Tomlinson, and Sutton, J., 1955, 3889.

[^2]: ${ }^{5}$ Hulett, Pegg, and Sutton, J., 1955, 3901.
 ${ }^{6}$ Higasi, Sci. Pap. Inst. Phys.'Chem. Res. Tokyo, 1937, 31, 211.
 ${ }^{7}$ Barclay, Le Fèvre, and Smythe, Trans. Faraday Soc., 1950, 46, 812.
 ${ }^{8}$ Vogel, J., 1948, 1830.
 ${ }^{9}$ Freiser, H'obbs, and Gross, J. Amer. Chem. Soc., 1949, 71, 111,
 10 Roberts, Webb, and Elhill, ibid., 1950, 72, 408,

